--- title: "Code Snippets Audit" output: html_notebook --- # collection of snippets for the data collection # Setup and calculations ```{r setup, include=FALSE, echo=FALSE} library(readr) library(ggplot2) library(dplyr) library(tidyverse) library(gridExtra) library(ggflowchart) library(tibble) # Read the HtnData.csv file with specified column types HtnData <- read_csv("HtnData.csv", col_types = cols( row.names = col_integer(), Patient_ID = col_integer(), Progress_Note_Date = col_character(), Age = col_integer(), Patient_Female = col_logical(), Patient_ATSI_Status = col_character(), Presentation_Symptoms = col_character(), Organisation_Name = col_integer(), Inclusion_Crit = col_logical(), HbA1c = col_logical(), Lipid = col_logical(), U_E = col_logical(), Dip_Urine = col_logical(), ACR_Urine = col_logical(), Lifestyle_Discussion = col_logical(), HTN_MGMT_PLN = col_logical(), c715_Check = col_logical(), c3_MO_FLWP_STBL = col_logical(), c6_MO_BP = col_logical(), c3_MO_RVW_LFSTL = col_logical(), c2_4_WK_RVW_ACE = col_logical(), )) # cleans the data somewhat. If there are inexplicable rows of NA, they will be removed HtnData <- HtnData[!is.na(HtnData$Patient_ID), ] # Display the dataframe for perusal print(HtnData) # Show data outputs below ## Calculate the average age of patients average_age <- mean(HtnData$Age) print(paste("The average age of patients is:", round(average_age, 0))) # Convert Inclusion_Crit to numeric if it's not already HtnData$Inclusion_Crit <- as.numeric(HtnData$Inclusion_Crit) # Calculates the percentage of patients that met the inclusion criteria inclusion_percentage <- mean(HtnData$Inclusion_Crit) * 100 print(paste("The percentage of patients who met the inclusion criteria is:", round(inclusion_percentage, 2), "%")) # everything below this point only deals with data where Inclusion_Crit is equal to 1 HtnDataold <- HtnData HtnData <- HtnData[HtnData$Inclusion_Crit == 1, ] ## Calculate the average age of patients average_age_included <- mean(HtnData$Age) print(paste("The average age of patients is:", round(average_age_included, 0))) ##histogram of the Age data #New column for age categories HtnData$Age_Group <- cut(HtnData$Age, breaks = c(-Inf, 14, 24, 44, 64, 80, Inf), labels = c("1-14", "15-24", "25-44", "45-64", "65-80","80+" ), include.lowest = TRUE, right = FALSE) # Create a histogram of the Age data. unused in final report ggplot(HtnData, aes(x = Age_Group)) + geom_bar(color = "black", fill = "lightblue") + scale_x_discrete(drop = FALSE) + theme_minimal() + labs(title = "Age Distribution of Patients diagnosed with Hypertension between audited dates", x = "Age Group", y = "Count") ### Male female ratio # Create data frame with counts of males and females - unused testing out techniques gender_count <- data.frame( gender = c("Female", "Male"), count = c(sum(HtnData$Patient_Female, na.rm = TRUE), sum(!HtnData$Patient_Female, na.rm = TRUE)) ) # Create pie chart - unused ggplot(gender_count, aes(x = "", y = count, fill = gender)) + geom_bar(width = 1, stat = "identity") + coord_polar("y", start = 0) + theme_void() + labs(title = "Gender Distribution") + geom_label(aes(label = round((count/sum(count))*100, 1)), position = position_stack(vjust = 0.5)) + scale_fill_brewer(palette = "Set2") #### checks if all investigations are done, then adds a column # Create a new column `Investig_Met` HtnData$Investig_Met <- HtnData$HbA1c & HtnData$Lipid & HtnData$U_E & HtnData$Dip_Urine & HtnData$ACR_Urine HtnData$Investig_Sine_Urine_Met <- HtnData$HbA1c & HtnData$Lipid & HtnData$U_E & HtnData$ACR_Urine ##### # Import previous audit results HtnData$Old_audit_Std_1_Met <- 0.28 HtnData$Old_audit_Std_2_Met <- 0.28 #create new column for followup breakdown that doesn't switch the NA values HtnData$c3_MO_FLWP_STBL_WITHNA <-HtnData$c3_MO_FLWP_STBL # Sometimes 3 month followup not applicable due to never getting stable, so as not to disturb the score for the unbroken down pie chart, any null value is changed to whatever the 2-4week followup value is # finds NA in c3_MO_FLWP_STBL and replaces it with the corresponding value from c2_4_WK_RVW_ACE na_index <- which(is.na(HtnData$c3_MO_FLWP_STBL)) HtnData$c3_MO_FLWP_STBL[na_index] <- HtnData$c2_4_WK_RVW_ACE[na_index] # Check **OLD** standard 1 met HtnData$Old_Std_1_Met <- HtnData$Investig_Met & (HtnData$c3_MO_RVW_LFSTL | HtnData$c2_4_WK_RVW_ACE ) & HtnData$Lifestyle_Discussion & HtnData$c3_MO_FLWP_STBL # Check **OLD** standard 2 met HtnData$Old_Std_2_Met <- HtnData$HTN_MGMT_PLN & HtnData$c715_Check & HtnData$c3_MO_FLWP_STBL & HtnData$c6_MO_BP # Check ***NEW*** standard 1 met HtnData$New_Std_1_Met <- HtnData$Investig_Met & HtnData$Lifestyle_Discussion & HtnData$c715_Check & HtnData$HTN_MGMT_PLN # Check ***NEW Standard 1 sine lifestsyle met*** - unused. for comprehension purposes only HtnData$New_Std_1_Sine_Lifestyle_Met <- HtnData$Investig_Met & HtnData$c715_Check & HtnData$HTN_MGMT_PLN # Check **NEW** standard 2 met HtnData$New_Std_2_Met <- HtnData$c3_MO_FLWP_STBL & HtnData$c6_MO_BP & (HtnData$c3_MO_RVW_LFSTL | HtnData$c2_4_WK_RVW_ACE) ## Pie charts for each standard - ended up unused, bar graph better representation to compare by year generate_pie_chart <- function(data, column) { # Count TRUE and FALSE instances counts <- table(data[[column]]) # Name counts for plotting df <- data.frame(labels = names(counts), counts = as.vector(counts)) df$labels <- ifelse(df$labels == "TRUE", "Standard Met", "Standard Not Met") # Calculate percentages for labeling df$perc <- round((df$counts/sum(df$counts))*100, 1) # Generate pie chart p <- ggplot(df, aes(x = "", y = counts, fill = labels)) + geom_bar(width = 1, stat = "identity", colour = 'black') + coord_polar("y", start = 0) + scale_fill_manual(values = c("Standard Not Met" = "#CC0000", "Standard Met" = "#FFFF00")) + labs(fill = "") + geom_text(data = subset(df, labels == "Standard Met"), aes(label = paste0("Standard Met: ", perc, "%")), position = position_stack(vjust = 0.5), color = "black") + ggtitle(paste("Percent of old standard 2 met")) + theme_minimal() + theme(axis.title.x=element_blank(), axis.title.y=element_blank(), panel.border = element_blank(), panel.grid=element_blank(), axis.ticks = element_blank(), plot.title=element_text(hjust=0.5), axis.text = element_blank()) print(p) } generate_pie_chart(HtnData, "Old_Std_2_Met") generate_pie_chart(HtnData, "New_Std_1_Sine_Lifestyle_Met") ###### Single bar chart for 715 # Calculate adherence for the 715 check counts <- table(HtnData$c715_Check) percentage_adherence <- sum(counts["TRUE"]) / sum(counts) * 100 # Create a data frame for the chart df <- data.frame(label = "715 Check", adherence = percentage_adherence) # Single Horizontal Bar Chart p <- ggplot(df, aes(x = "", y = adherence)) + geom_bar(stat = "identity", width = 0.2, fill = "steelblue") + coord_flip() + geom_hline(yintercept = 60, linetype = "dashed", color = "red", aes(label = "60% standard")) + geom_hline(yintercept = 0, color = "black", size = 1.0) + geom_text(data = df, aes(label = paste0(round(adherence, 1), "%")), vjust = -1.5, color = "black") + labs(x = "", y = "Adherence Percentage (%)", title = "Adherence to 715 Check Standard") + theme_minimal() + ylim(0,100) print(p) ###### Single bar chart for lifestyle discussion # Calculate adherence for the 715 check counts <- table(HtnData$Lifestyle_Discussion) percentage_adherence <- sum(counts["TRUE"]) / sum(counts) * 100 # Create a data frame for the chart df <- data.frame(label = "Lifestyle Discussion", adherence = percentage_adherence) # Single Horizontal Bar Chart p <- ggplot(df, aes(x = "", y = adherence)) + geom_bar(stat = "identity", width = 0.2, fill = "steelblue") + coord_flip() + geom_hline(yintercept = 60, linetype = "dashed", color = "red", aes(label = "60% standard")) + geom_hline(yintercept = 0, color = "black", size = 1.0) + geom_text(data = df, aes(label = paste0(round(adherence, 1), "%")), vjust = -1.5, color = "black") + labs(x = "", y = "Adherence Percentage (%)", title = "Adherence to Lifestyle Discussion Standard") + theme_minimal() + ylim(0,100) print(p) #### single bar chart for htn mgmt plan # Calculate adherence for the htn mgmt plan counts <- table(HtnData$HTN_MGMT_PLN) percentage_adherence <- sum(counts["TRUE"]) / sum(counts) * 100 # Make a data frame for the chart df <- data.frame(label = "Hypertension Management Plan", adherence = percentage_adherence) # Single Horizontal Bar Chart p <- ggplot(df, aes(x = "", y = adherence)) + geom_bar(stat = "identity", width = 0.2, fill = "steelblue") + coord_flip() + geom_hline(yintercept = 60, linetype = "dashed", color = "red", aes(label = "60% standard")) + geom_hline(yintercept = 0, color = "black", size = 1.0) + geom_text(data = df, aes(label = paste0(round(adherence, 1), "%")), vjust = -1.5, color = "black") + labs(x = "", y = "Adherence Percentage (%)", title = "Adherence to Hypertension Management Plan Standard") + theme_minimal() + ylim(0,100) print(p) #### Variables for use in the text NoOfFemales <- (gender_count$count[gender_count$gender == "Female"]) NoOfMales <- (gender_count$count[gender_count$gender == "Male"]) AverageAge <- (round(average_age_included, 1)) FinalIncluded <- nrow(HtnDataold[HtnDataold$Inclusion_Crit == 1, ]) ``` # Flow Chart ```{r flowchart, include=TRUE, echo=FALSE, fig.cap="Case Selection for Kimberley Hypertension Audit of 2022 Patients"} # Define ineligibles, all others defined before Ineligibles <- nrow(HtnDataold) - FinalIncluded # Define edge data edge_data <- tibble::tibble( from = c("patients_attending","patients_attending","met_criteria"), to = c("met_criteria","participants_not_eligible","study_sample") ) # Define data for each box node_data <- tibble::tibble( name = c("patients_attending","met_criteria","participants_not_eligible","study_sample"), label = c(paste0("Patients aged 10 or above attending KAMS clinics where hypertension\n was recorded as the presenting complaint between 01/01/22 and 01/06/22.\nn=", nrow(HtnDataold)), paste0("Patients with no previously recorded\n diagnosis or treatment of hypertension \nn=", FinalIncluded), paste0("Patients with a recorded diagnosis\n or treatment of hypertension\n outside of the specified dates \nn=", Ineligibles), paste0("Audit sample n=", FinalIncluded)), x_nudge = c(1.0, 0.48, 0.48, 0.5), y_nudge = c(0.25, 0.3, 0.3, 0.25) ) # Generates the flowchart ggflowchart( data = edge_data, node_data = node_data, fill = 'white', colour = 'black', text_colour = 'black', text_size = 3.88, arrow_colour = "black", arrow_size = 0.3, family = "sans", horizontal = FALSE ) ``` # Table of age categories ```{r tableofage, echo=FALSE, include=TRUE, warning=FALSE, fig.cap='Age Distribution of Patient Sample', fig.pos ='H', message=FALSE} library(kableExtra) # Summarise data AgeTable <- HtnData %>% group_by(Age_Group) %>% summarise(Count = n(), Percentage = (Count / nrow(HtnData))*100) %>% # formatting columns mutate(Age_Group = as.character(Age_Group), Percentage = paste0(round(Percentage, 2), "%")) %>% rename(`Age Group` = Age_Group) # making the table kable(AgeTable, digits = 2, caption = "Age distribution of Patient Sample", align = 'c') %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"), full_width = F, latex_options = "HOLD_position") ``` # Converting variables to in text references ```{r calculatingstandards-results, echo=FALSE} OldSt1Text <- round(mean(as.numeric(HtnData$Old_Std_1_Met)) * 100, 1) OldSt2Text <- round(mean(as.numeric(HtnData$Old_Std_2_Met)) * 100, 1) OldASt1Text <- mean(as.numeric(HtnData$Old_audit_Std_1_Met)) * 100 OldASt2Text <- mean(as.numeric(HtnData$Old_audit_Std_2_Met)) * 100 ``` # Bar graph comparing previous and current audit results ```{r bargraphStandardOld, echo=FALSE, include=TRUE, fig.cap="Comparison of Previous and Present Audit Based on Previous Standard"} # Unite the columns into one dataframe standards <- HtnData %>% select(Old_Std_1_Met, Old_Std_2_Met, Old_audit_Std_1_Met, Old_audit_Std_2_Met) %>% pivot_longer(cols = everything(), names_to = "Standard", values_to = "Met") %>% mutate(Met = as.numeric(Met)) %>% group_by(Standard) %>% summarise(Percentage = mean(Met, na.rm = TRUE) * 100) standards$Condition <- ifelse(grepl("Old_audit", standards$Standard), "2022", "2023") standards$Standard_No <- ifelse(grepl("1", standards$Standard), "Standard 1", "Standard 2") # Create the bar plot ggplot(standards, aes(x = Standard_No, y = Percentage, fill = Condition)) + geom_bar(stat = "identity", position = "dodge", width = 0.5, color = "black") + geom_text(aes(label = paste0(formatC(Percentage, format = "f", digits = 1), "%")), position = position_dodge(width = 0.5), vjust = -0.5, color = "black") + geom_hline(yintercept = 60, linetype = "dashed", color = "black") + geom_hline(yintercept = 0, color = "black", size = 1.0) + scale_fill_manual(values = c("2023" = "#c71d22", "2022" = "#ffd503")) + labs(x = "Standards", y = "Percentage Adherence (%)", fill = "Condition", title = "") + theme_minimal() + ylim(0,100) ``` # New standard Pie Chart ```{r newstandard1, echo=FALSE, include=TRUE, fig.cap = "Proportion Of Present Audit Adherence With Standard 1"} generate_pie_chart <- function(data, column, title) { # Count TRUE and FALSE instances counts <- table(data[[column]]) # Name counts for plotting df <- data.frame(labels = names(counts), counts = as.vector(counts)) df$labels <- ifelse(df$labels == "TRUE", "Adherent", "Non-Adherent") # Calculate percentages for labeling df$perc <- round((df$counts/sum(df$counts))*100, 1) df$newlabels <- paste(df$labels, ": ", df$perc, "%", sep = "") # Generate pie chart p <- ggplot(df, aes(x = "", y = counts, fill = newlabels)) + geom_bar(width = 1, stat = "identity", colour = 'black') + coord_polar("y", start = 0) + scale_fill_manual(values = c("#ffd503", "#c71d22")) + labs(fill = "") + ggtitle(title) + theme_minimal() + theme(axis.title.x=element_blank(), axis.title.y=element_blank(), panel.border = element_blank(), panel.grid=element_blank(), axis.ticks = element_blank(), plot.title=element_text(hjust=0.0), axis.text = element_blank()) return(p) } # Create the pie chart for New_Std_1_Met newstandard1 <- generate_pie_chart(HtnData, "New_Std_1_Met", "") # Print the pie chart print(newstandard1) ``` # Baseline investigations ```{r AdherenceBaselineFull, echo=FALSE, include=TRUE, fig.cap="Adherence to Standard for Baseline Investigations"} columns_to_run <- c("HbA1c" = "HbA1c", "Lipid" = "Lipids", "U_E" = "U&Es", "Dip_Urine" = "Urine Dipstick", "ACR_Urine" = "Urine ACR") # make new data frame to store the results adherence_inv_perc <- data.frame() # calculate adherence percentages for each column for(column in names(columns_to_run)) { counts <- table(HtnData[[column]]) df <- data.frame(label = column, adherence = sum(counts["TRUE"]) / sum(counts) * 100, pretty_label = columns_to_run[[column]]) adherence_inv_perc <- rbind(adherence_inv_perc, df) } # calculate the adherence percentage for ALL the investigations all_investigations <- HtnData %>% rowwise() %>% mutate(all_investigations_done = all(c(HbA1c, Lipid, U_E, Dip_Urine, ACR_Urine))) %>% ungroup() %>% summarize(all_adherence = mean(all_investigations_done) * 100) # Add row for "All investigations" into the adherence_inv_perc df df <- data.frame(label = "All", adherence = all_investigations$all_adherence, pretty_label = "All investigations") adherence_inv_perc <- rbind(adherence_inv_perc, df) # Reorder based on 'adherence' adherence_inv_perc <- adherence_inv_perc[order(adherence_inv_perc$adherence, decreasing = TRUE), ] adherence_inv_perc$pretty_label <- factor(adherence_inv_perc$pretty_label, levels = adherence_inv_perc$pretty_label) adherence_inv_perc$color <- ifelse(adherence_inv_perc$pretty_label == "All investigations", "All investigations", "Single investigation") # Make the bar chart ggplot(adherence_inv_perc, aes(x = pretty_label, y = adherence, fill = color)) + geom_bar(stat = "identity", width = 0.7, color="black") + geom_hline(yintercept = 60, linetype = "dashed", color = "red") + geom_hline(yintercept = 0, color = "black", size = 1.0) + geom_text(aes(label = paste0(formatC(adherence, format = "f", digits = 1), "%")), vjust = -0.3, color = "black") + labs(x = "Investigations", y = "Adherence Percentage (%)", title = "") + scale_fill_manual(values = c("Single investigation" = "#009aa6", "All investigations" = "#c54b00")) + ylim(0, 100) + theme_minimal() + theme(legend.position = "none") ``` # Other management bar graph ```{r OtherManagement, include=TRUE, echo=FALSE, fig.cap="Adherence of Remaining Criteria"} # Calculate adherence counts_715 <- table(HtnData$c715_Check) counts_life <- table(HtnData$Lifestyle_Discussion) counts_htn <- table(HtnData$HTN_MGMT_PLN) percentage_adherence_715 <- sum(counts_715["TRUE"]) / sum(counts_715) * 100 percentage_adherence_life <- sum(counts_life["TRUE"]) / sum(counts_life) * 100 percentage_adherence_htn <- sum(counts_htn["TRUE"]) / sum(counts_htn) * 100 # combine the different variables df <- data.frame(label = c("715 Check", "Lifestyle Discussion", "Hypertension Management Plan"), adherence = c(percentage_adherence_715, percentage_adherence_life, percentage_adherence_htn)) # Combined Bar Chart p <- ggplot(df, aes(x = label, y = adherence, fill = label)) + geom_bar(stat = "identity", width = 0.4, color="black") + coord_flip() + geom_hline(yintercept = 60, linetype = "dashed", color = "red") + geom_hline(yintercept = 0, color = "black", size = 1.0) + geom_text(aes(label = paste0(formatC(adherence, format = "f", digits = 1), "%")), vjust = -2.5, color = "black") + labs(x = "", y = "Adherence Percentage (%)", title = "") + scale_fill_manual(values = c("Lifestyle Discussion" = "#231f20", "Hypertension Management Plan" = "#bc2026", "715 Check" = "#008596")) + theme_minimal() + theme(legend.position = "none") + # line added to remove the legend ylim(0, 100) print(p) ``` # Standard 2 Pie chart ```{r newstandard2, echo=FALSE, include=TRUE, fig.cap="Proportion of Present Audit Adherence with Standard 2"} generate_pie_chart <- function(data, column, title) { # Get proportions of true and false counts <- table(data[[column]]) # Name counts for plotting df <- data.frame(labels = names(counts), counts = as.vector(counts)) df$labels <- ifelse(df$labels == "TRUE", "Adherent", "Non-Adherent") # Percentages for labeling df$perc <- round((df$counts/sum(df$counts))*100, 1) df$newlabels <- paste(df$labels, ": ", df$perc, "%", sep = "") # Generate pie chart p <- ggplot(df, aes(x = "", y = counts, fill = newlabels)) + geom_bar(width = 1, stat = "identity", colour = 'black') + coord_polar("y", start = 0) + scale_fill_manual(values = c("#ffd503", "#c71d22")) + labs(fill = "") + ggtitle(title) + theme_minimal() + theme(axis.title.x=element_blank(), axis.title.y=element_blank(), panel.border = element_blank(), panel.grid=element_blank(), axis.ticks = element_blank(), plot.title=element_text(hjust=0.0), axis.text = element_blank()) return(p) } # Create the pie chart for New_Std_1_Met newstandard1 <- generate_pie_chart(HtnData, "New_Std_2_Met", "") # show the pie chart print(newstandard1) ``` # Follow up criteria ```{r followupfinal, include=TRUE, echo=FALSE, fig.cap="Adherence to Criteria for Followup"} # Calculate adherence to followup HtnData$initial_flwp <- (HtnData$c3_MO_RVW_LFSTL | HtnData$c2_4_WK_RVW_ACE) HtnData$complete_followup_adherence <- HtnData$initial_flwp & HtnData$c3_MO_FLWP_STBL_WITHNA & HtnData$c6_MO_BP columns_to_run <- c("initial_flwp" = "Initial Followup", "c3_MO_FLWP_STBL_WITHNA" = "Three Month Followup", "c6_MO_BP" = "Six Month BP", "complete_followup_adherence" = "Complete Followup") # add complete followup data here adherence_flwp_perc <- data.frame() for(column in names(columns_to_run)) { counts <- table(HtnData[[column]]) df <- data.frame(label = column, adherence = sum(counts["TRUE"]) / sum(counts) * 100, pretty_label = columns_to_run[[column]]) adherence_flwp_perc <- rbind(adherence_flwp_perc, df) } adherence_flwp_perc$pretty_label <- factor(adherence_flwp_perc$pretty_label, levels = c("Initial Followup", "Three Month Followup", "Six Month BP", "Complete Followup")) # Bar chart below here ggplot(adherence_flwp_perc, aes(x = pretty_label, y = adherence, fill = pretty_label)) + geom_bar(stat = "identity", width = 0.5, color="black") + scale_fill_manual(values=c("Initial Followup" = "#009aa6", "Three Month Followup" = "#009aa6", "Six Month BP" = "#009aa6", "Complete Followup" = "#c54b00")) + geom_hline(yintercept = 60, linetype = "dashed", color = "red") + geom_hline(yintercept = 0, color = "black", size = 1.0) + geom_text(aes(label = paste0(formatC(adherence, format ="f", digits = 1),"%")), vjust = -0.3, color = "black") + labs(x = "Follow up Criteria", y = "Adherence Percentage (%)", title = "") + theme_minimal() + theme(legend.position = "none") + # line added to remove the legend ylim(0,100) ``` # More in text references for variables ```{r calculatingstandards-discussion, echo=FALSE} OldSt1Text <- round(mean(as.numeric(HtnData$Old_Std_1_Met)) * 100) OldSt2Text <- round(mean(as.numeric(HtnData$Old_Std_2_Met)) * 100) OldASt1Text <- round(mean(as.numeric(HtnData$Old_audit_Std_1_Met)) * 100, 1) OldASt2Text <- round(mean(as.numeric(HtnData$Old_audit_Std_2_Met)) * 100, 1) # for new standards NewSt1Text <- round(mean(as.numeric(HtnData$New_Std_1_Met)) * 100, 1) NewSt2Text <- round(mean(as.numeric(HtnData$New_Std_2_Met)) * 100, 1) counts_715 <- table(HtnData$c715_Check) counts_life <- table(HtnData$Lifestyle_Discussion) counts_htn <- table(HtnData$HTN_MGMT_PLN) counts_urin <- table(HtnData$Dip_Urine) text715 <- round(sum(counts_715["TRUE"]) / sum(counts_715) * 100, 1) textlfstl <- round(sum(counts_life["TRUE"]) / sum(counts_life) * 100, 1) texturin <- round(sum(counts_urin["TRUE"]) /sum(counts_urin) * 100, 1) ``` ## Action Plan ```{r actionplan, echo=FALSE, include=TRUE, message=FALSE, fig.pos ='H', fig.cap="Action Plan following 2023 Audit of Adherence to Kimberley Hypertension Guidelines"} library(readxl) library(kableExtra) datadictionary <- read_excel("actionplan.xlsx") datadictionary %>% kableExtra::kable(df, format = "latex", booktabs = TRUE, linesep = "\\addlinespace", caption = "Data Dictionary for Collection") %>% kable_styling(latex_options = c( "scale_down", "bordered", "HOLD_position")) %>% column_spec(1, bold = FALSE, width = "15em") %>% column_spec(2:5, width = "10em") %>% row_spec(0, bold = TRUE, italic = FALSE) ```